What is the presentation layer in the OSI model?

The presentation layer is the sixth layer in the OSI model and is responsible for converting different file formats. This allows two systems to communicate. Other tasks carried out by the sixth layer include data compression and encryption.

What is the presentation layer?

The presentation layer is the sixth layer of the OSI model. It is primarily used to convert different file formats between the sender and the receiver. The OSI model is a reference model that is used to define communication standards between two devices within a network. The development of this standard began in the 1970s and it was first published at the beginning of the following decade. This standard enables seamless interaction between different technical systems.

The model is made up of a total of seven different layers, all having their own clearly defined tasks. While there are clear boundaries between the layers, the layers interact with each other, with each layer building off the one below it. The different layers are as follows:

  1. Physical layer
  2. Data link layer
  3. Network layer
  4. Transport layer
  5. Session layer
  6. Presentation layer
  7. Application layer

What does the presentation layer do?

The presentation layer interacts closely with the application layer, which is located directly above it. The presentation layer’s main task is to present data in such a way that it can be understood and interpreted from both the system sending the data and the system receiving it. After this has been accomplished, the application layer then determines how the data should be structured and what sort of data and values are permissible.

Using these entries, a command set, or an abstract transfer syntax, is then automatically created. The presentation layer now has the task of transferring the data in such a way that it is readable without changing the information contained within it.

The presentation layer is often also responsible for the encryption and decryption of data. The information is first encrypted on the sender’s side and then sent to the receiver in an encrypted state. Keys and encryption methods are then exchanged in the presentation layer. The recipient is then able to decrypt the unreadable data and convert it into a format that can be understood and interpreted.

Which format does the presentation layer use?

If data is shown during a transfer, we often use the term transfer syntax. These are separated into the abstract transfer syntax, in which the transferred values are written, and the concrete syntax, which contains a definition of the value coding.

The receiver can only process and understand the data they receive if they receive all of the information from the presentation layer. The most common definition language is Abstract Syntax Notation One (ASN.1), which is also recommended by the ISO. The ISO is an organization that is responsible for developing international standards in technology, management and manufacturing.

The presentation layer has many different formats. The most common text formats are the ASCII (American Standard Code for Information Interchange) and EBCDIC (Extended Binary-Coded Decimal Interchange Code). The most common image formats are GIF, JPEG and TIFF. Widely used video formats include MIDI, MPEG and QuickTime.

Presentation layer protocols

There are many different presentation layer protocols as well as transfer and encryption technologies in the presentation layer. These include:

  • Telnet
  • FTP
  • HTTP
  • SMTP
  • NNTP
  • NetBIOS

Skipping the presentation layer

The tasks which are carried out by the presentation layer are not always necessary for communication between two systems. In instances where both systems use the same formats, data conversion is not necessary. Additionally, encryption and compression are not required for every interaction and can also be carried out in another layer of the OSI model. If this is the case, the presentation layer can be skipped and the application layer (7) can communicate directly with the session layer (5) instead.

We use cookies on our website to provide you with the best possible user experience. By continuing to use our website or services, you agree to their use. More Information.